
Application Note

Improved Method for Complex Modulus Estimation
by Lauge Fulgsang Nielsen, Building Materials Laboratory, The Technical University of Denmark 
& N. Johan Wismer, S. Gade, Brüel & Kjær, Denmark
In industrial products, vibration and
the noise it creates is often a major
parameter to be taken into account. It
is therefore usually very important to
measure the material properties i.e.
stiffness and damping, that determine
how vibrations are generated, trans-
mitted and damped. This application
note describes a method developed by
Mr. Fuglsang Nielsen which will allow
the standard non-resonant method for
the determination of complex modulus
to be used at higher frequencies than
otherwise possible. It is also shown
how this method can be implemented
using the Multichannel Analysis Sys-
tem Type 3550.
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Force

σ = E x ε where
σ = Force / Area and

ε = ∆L / L

 ∆L L

Fig.1 Hooke’s law
Introduction

One of the most fundamental rela-
tions governing the dynamic proper-
ties of materials is Hooke’s law of
elasticity.

Hooke’s law (see Fig. 1) states that
there is a linear relationship between
stress (σ) and strain (ε). Stress is
force per unit area, i.e. pressure, and
it is measured in Newtons per square
meter (N/m2) also called Pascal (Pa).
Strain is relative deformation, i.e. de-
formation divided by the original di-
mensions, and is therefore
dimensionless.

The ratio between stress and
strain, E is called the modulus of
elasticity or Young’s modulus, and as
for stress, it is measured in Pascal.
Like mass density, the modulus of
elasticity is a material constant. For
steel it is approximately 200 GPa
(200 × 109 Pa), and for aluminium it
is approximately 70 GPa.

Hooke’s law describes many mate-
rials very accurately, especially met-
als which have relatively low
damping coefficients. 

For many other materials, such as
polymers and wood, the damping is
so large that it cannot be ignored.
Brüel & Kjær B K
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Fig.2 Spring and dashpot models of var-
ious viscoelastic materials

Fig.3 Simple set-up for measurement of
complex modulus
Viscoelastic Materials

Viscoelastic models are often intro-
duced when Hooke’s law is deemed
inaccurate. A few basic models are
shown in the following:

Hooke: σ = Eε

Newton: σ = ηε•

Maxwell: σ• /Ε + σ/η = ε•

Kelvin: σ = ηε• + Eε

A dot above a symbol indicates
time derivative. Hooke’s law de-
scribes purely elastic materials, and
Newton’s law describes purely vis-
cous materials.

To make these equations more in-
tuitively understandable, “spring and
dashpot” models can be drawn (see
Fig. 2).

Many more viscoelastic models can
be constructed by adding more
springs and/or dashpots, in series or
in parallel, to the models above.

The viscoelastic models introduce a
time, and therefore also a frequency,
dependency between stress and
strain. If we look at the frequency
domain representation of the real-
tions, we get the following equations:

Hooke: σ ( jω) = E × ε ( jω)

Newton: σ ( jω) = jωη × ε ( jω)

Maxwell: σ ( jω) = 

Kelvin: σ ( jω) = (jωη+ E) × ε (jω)

Where j is the imaginary number,
and ω is the frequency in rad/s. The
presence of j indicates that stress and
strain are not usually in phase for
viscoelastic materials.

The advantage of the frequency do-
main representation is that we can
return to the simple linear relation-
ship used for Hooke’s law. We just
have to introduce the complex modu-
lus of elasticity, Ec, which is a com-
plex function of frequency.

(1)

where Ec is defined as follows:

Hooke: Ec = E

Newton: Ec = jωη

Maxwell: Ec = 

jωηE
jωη E+
-------------------- ε jω( )×

Ec Ec ω( ) σ jω( )
ε jω( )--------------= =

jωηE
jωη E+
------------------------
2

Kelvin: Ec = jωη + E

Note that for all viscoelastic mod-
els, the magnitude of Ec, i.e. the ab-
solute Youngs’s modulus, |Ec|, will
either be constant or increase as a
function of frequency.

The imaginary part, Im(Ec) of Ec
divided by the real part, Re(Ec) of Ec
is referred to as the Loss Factor and
is an indicator of the damping of the
material. A number of other damping
descriptors are described in Ref.[2].

After this short introduction to vis-
coelastic models, the question that re-
mains is how to measure the complex
modulus of elasticity?

Material Properties contra 
System Properties

When we want to measure the mod-
ulus of elasticity, the first method
that comes to mind is a simple dis-
placement versus force measurement
(i.e. “mobility”, compliance, re-
ceptance, flexibility or admittance
measurement) on a block of the ma-
terial of interest. 

Knowing the dimensions of the test
specimen, the complex modulus can
be calculated based on a simple fre-
quency response function (FRF)
measurement of compliance:

Ec = L/A × 1 / FRF (ω) (2)

where

FRF(ω) = ∆L(ω) /Force (ω) (3)

L is once again the length, and A is
the cross-sectional area of the test
specimen. 

This is the so-called non-resonant
method for the estimation of complex
modulus (see Ref.[3] ). See Ref.[1] for
an introduction to frequency response
measurements on simple SDOF sys-
tems.

At low frequencies the method
works really well, but at higher fre-
quencies the mass of the test speci-
men and of the other components will
begin to affect the measurement. Put
in another way, at higher frequencies,
the inertial forces cannot be ignored
anymore. So as we get close to the
first resonance frequency, the FRF is
no longer only an expression of the
material properties, but also of the
system properties of the complete
test specimen and test setup.

Here is where Mr. Fuglsang
Nielsen’s method comes in, see Ref.
[5]. Since we know the geometry of
the specimen, it is possible to find an
analytic solution of how this simple
system vibrates. If we assume that
the metal components on top of the
test specimen can be described as a
lumped mass, the theoretical compli-
ance of this simple system can be
shown to be:

(4)

Complianceω( ) ∆L ω( )
Force ω( )-------------------------= =

β( )sin

ω2
Ms β β( ) M β( )sin×–cos×⁄( )

-----------------------------------------------------------------------------------
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Fig.4 Test setup for the measurement of complex modulus

Fig.5 Magnitude of complex modulus and loss factor found using equation (2)
where

(5)

ρ is the mass density of the test ma-
terial (kg/m3), Ms is the mass of the
test specimen (A × L × ρ), M is the
lumped mass of the metal compo-
nents on top of the specimen, and Ec
is the complex modulus of elasticity
of the specimen material.

Equation (4) will not be derived
here, but it involves solving a partial
differential equation of the type:

 

subject to the constraints:

u = 0 for x = 0

for x = L

u is the displacement, which is a func-
tion of both position, x, and time t.

The compliance (∆L/Force) is found
from the frequency response meas-
urement, and A, L, ρ, and M can be
measured with great accuracy. This
leaves only one unknown in equa-
tions (4) and (5), namely Ec, which
can be found by a simple iterative
process.

The modified non-resonant method
can be said to peel the system char-
acteristics from the measurement da-
ta, leaving only the material
properties.

Practical Measurement

To perform the measurement, the
test set-up shown in Fig. 4 was used. 

The test specimen was made of
rubber, it was cylindrical, with a di-
ameter of 20 mm and a height of
60 mm. The following parameters
were either measured or calculated.

β ω2
L

2ρ Ec⁄=

EA
∂2

u

∂x
2-------- ρA

∂2
u

∂t
2--------– 0=

EA
∂u
∂x
------ F M–

∂2
u

∂t
2--------=
      USER-DEFINABLE DISPLAY FUNCTION: CMPLX
      --------------------------------------------                           
                                                                               
      Graph Displayed as:  FREQ RESP  (Complex, V/V
                                                                               
      cmplx_mdls1 = L / A * inv_H1                                 
      L = 60.00m ;                                                            
      A = 314.0u ;                                                            
      inv_H1 = data_source:GAA / data_source:GAB     

Fig.6 Definition of the UDDF CMPLX_MDL
❍ A = 314 mm2

❍ L = 60 mm
❍ ρ = 1058 kg/m3

❍ Ms = 19.9 g
❍ M = 11 g

The first measurement (Fig. 5) was
at low frequencies (100 to 300 Hz).
The upper graph shows the User-De-
finable Display Function (UDDF)
CMPLX_MDLS1 (definition in Fig. 6)
which is an inverted H1 frequency
3

_MDLS1                           
  

)               Unit: V     
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USER-DEFINABLE DISPLAY FUNCTION: LOSS_FACTOR1                           
      ---------------------------------------------                            
                                                                               
      Graph Displayed as:  AUTOSPEC  (Real, V2)                    Unit: V     
                                                                               
      loss_factor1 = abs( imag( cmplx_mdls1 ) / real( cmplx_mdls1 ))           
      cmplx_mdls1 = L / A * inv_H1                                             
      L = 60.00m ;                                                             
      A = 314.0u ;                                                             
      inv_H1 = data_source:GAA / data_source:GAB                               

960193/1e 

Fig.7 Definition of the UDDF LOSS_FACTOR1
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Fig.8 Frequency response function of compliance (100 to 900 Hz)

Fig.9 Both complex modulus and loss factor are erroneous close to the resonance fre-
quency

960187e
response function that has been
scaled by the factor L/A, i.e. using
equation (2). The lower graph shows
the LOSS_FACTOR1 (definition in
Fig. 7).

Both curves look trustworthy, but
as stated earlier, no viscoelastic mod-
el will allow for a decrease of the
magnitude of the complex modulus of
elasticity as a function of frequency.
So something is obviously wrong
here.

If we look at Fig. 8, which shows a
measurement at higher frequencies
(100 to 900 Hz), the frequency re-
sponse function clearly indicates that
there is a resonance at 552 Hz. So we
can see that the shapes of
CMPLX_MDLS1 and
LOSSFACTOR1 are, at least, partly
due to the fact that we are getting
close to the first resonance frequency.

Fig. 9 shows the two UDDFs
CMPLX_MDLS1 and
LOSS_FACTOR1, and at this higher
frequency range, it can clearly be
seen that both are strongly affected
by the resonance. The inertial forces
disturb the measurement even at
much lower frequencies than the res-
onance frequency, and the question is
whether the displayed values can be
trusted even at 100 Hz.

What is needed is a method to re-
move the effect of the inertial forces,
and this is precisely what the modi-
fied non-resonant method described
earlier will do.

The Type 3550 can now perform
the computations needed  to compen-
sate for the system characteristics of
this simple system using equations
(4) and (5).

The definition of the intermediate
User-Definable Auziliary Information
(UDAI) BETA_OK is shown in
Fig. 10. When BETA_OK is activated
in the cursor set-up, it performs a
Newton iteration to find the β of
equation (5). A detailed explanation
of how this UDAI works is beyond
the scope of this note (see Ref. [4]).

While the iteration process is in
progress, BETA_OK will show
“failed”. After 10 iterations, which is
much more than necessary, the value
of BETA_OK will change to “passed”.

The BETA_OK UDAI is then deac-
tivated and the two UDDFs
CMPLX_MDLS (definition in Fig.11)
and LOSS_FACTOR (definition in
Fig.12) can then be displayed.

These two UDDFs use the beta
found by BETA_OK to calculate the
complex modulus of elasticity and the
loss factor, using equation (5).
4
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      USER-DEFINABLE AUXILIARY INFORMATION: BETA_OK                            
      ---------------------------------------------                            
      dB reference: 1.00V                                                      
      Reading: PASSED / FAILED                                                 
                                                                               
      beta_ok = re_execute_UDF_if( count < 9.5 ) & beta                        
      beta = save( new_estimate( beta2( beta )))                               
      new_estimate(beta) = beta - delta_beta( beta, c_sin(beta), c_cos(beta) ) 
      beta2(beta) = select( count < 1.5, beta_guess, beta )                    
      count = count + 1                                                        
      delta_beta(b,sb,cb) = y(b,sb,cb) / dy(b,sb,cb)                           
      c_sin(b) = -0.5*j * (exp(j*b) - exp(-j*b))                               
      c_cos(b) =  0.5   * (exp(j*b) + exp(-j*b))                               
      beta_guess = sqrt( omega_sq * L_sq * rho / E_guess )                     
      y(b,sb,cb) = (inv_H1 + M_omega_sq) * sb - Mr_omega_sq / b * cb           
      dy(b,sb,cb) = Mr_omega_sq/b*sb+(inv_H1+M_omega_sq+Mr_omega_sq/sq(b))*cb  
      L_sq = sq( L )                                                           
      E_GUESS = 50.00M ;                                                       
      inv_H1 = data_source:GAA / data_source:GAB                               
      M_omega_sq = M * omega_sq                                                
      Mr_omega_sq = Mr * omega_sq                                              
      omega_sq = sq( omega )                                                   
      sq(x) = x * x                                                            
      M = 11.00m ;                                                             
      Mr = A * L * rho ; kg                                                    
      RHO = 1058 ;                                                             
      L = 60.00m ;
      A = 314.0u ;                                                                          

Fig.10 The definition of the UDAI BETA_OK
The result of CMPLX_MDLS and
LOSS_FACTOR are shown in Fig. 13.
The two curves look very different
from the curves in Fig.9. The effect of
the resonance cannot be seen any-
more!

The magnitude of the complex
modulus of elasticity can be seen to
be slightly increasing, and is about
40 MPa. The loss factor is very close
to 0.1 in the frequency range from
100 to 900 Hz. In the 100 to 900 Hz
frequency range the complex modu-
lus of elasticity can be said to be ap-
proximately:

Ec = 40 MPa + 4 MPa × j

To see how the modified non-reso-
nant method behaves at higher fre-
quencies, a high frequency
measurement was performed. The
upper graph in Fig.14 shows the fre-
quency response from 100 to 3300 Hz,
the second resonance can be seen at
2048 Hz. Note that there is a differ-
ence of more than 40 dB between the
highest and the lowest FRF level.

The magnitude of the complex
modulus was relatively stable at
about 40 to 50 MPa in the full fre-
quency range up to 3200 Hz, and is
therefore not shown.

The loss factor is shown in the low-
er graph, and can be seen to become
very noisy at higher frequencies. The
reason for this is that the inertial
forces dominate at higher frequen-
cies, i.e. stiffness and damping have
very little effect on the FRF on which
the calculations are based.

At higher frequencies, this method
is also very sensitive to errors in the
analytical model; if the real system
deviates too much from the model,
then errors will be introduced. All sys-
tem parameters (A, L, ρ Ms, M) must
be measured with high accuracy.

Finally, we can check whether the
loss factor is consistent with the loss
factor found by the resonance band-
width method.
      USER-DEFINABLE DISPLAY FUNCTION: CMPL
      -------------------------------------------                            
                                                                               
      Graph Displayed as:  FREQ RESP  (Complex, V/V
                                                                               
      CMPLX_MDLS = save( omega_sq * L_sq * rho / b
      omega_sq = sq( omega )                                       
      L_sq = sq( L )                                                         
      RHO = 1058 ;                                                         
      beta_sq  = sq( get:beta )                                        
      sq(x) = x * x                                                            
      L = 60.00m ;                                                           

Fig.11 The definition of the UDDF CMPLX
This method states that the loss
factor at a resonance is approximate-
ly equal to the half-power bandwidth
divided by the resonance frequency.

The UDAI LF_AT_RESON (defini-
tion is shown in Fig. 15) will perform
this calculation at the resonance
which is selected by the main cursor.

Fig. 16 shows the frequency re-
sponse function in the upper graph,
and the loss factor found by the mod-
ified non-resonant method in the low-
er graph.

 In the upper cursor setup, the
UDAI LF_AT_RESON has been acti-
vated and is reading out 0.089, and
at the same frequency the main cur-
sor is reading out 0.095 in the lower
graph.

Caveats

Two points requiring special atten-
tion will be mentioned at this final
stage.

The first deals with the numerical
method used to find the solution to
equations (5). The problem here is
that there are several numerical so-
lutions, but it is only the first of these
solutions that yield the correct β,
which is in turn used to calculate the
complex modulus of elasticity by use
of equation (4). In this application
note, the method used to find the so-
lution to the numerical problem is
the well known Newton-Raphson
method. This method requires an in-
itial guess. Our initial guess is that
the modulus of elasticity is real (i.e.
5
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)               Unit: V     

eta_sq )                     
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      USER-DEFINABLE DISPLAY FUNCTION: LOSS_FACTOR                          
      --------------------------------------------                             
                                                                               
      Graph Displayed as:  AUTOSPEC  (Real, V2)                    Unit: V     
                                                                               
      loss_factor = abs( imag( cmplx_mdls ) / real( cmplx_mdls ))              
      CMPLX_MDLS = save( omega_sq * L_sq * rho / beta_sq )                     
      omega_sq = sq( omega )                                                   
      L_sq = sq( L )                                                           
      RHO = 1058 ;                                                             
      beta_sq  = sq( get:beta )                                                
      sq(x) = x * x                                                            
      L = 60.00m ;                                                             

960190/1e 

_MDLS Fig.12 The definition of the UDDF LOSS_FACTOR
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Fig.13 Magnitude of complex modulus and loss factor found using equation (4) and (5)
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Fig.14 FRP and loss factor, 100 to 3300 Hz
purely elastic) and constant over all
frequencies. Looking at Fig. 10, you
will see that there is an equation
called E_GUESS = 50 MPa which de-
fines the initial guess. Had we start-
ed with a much higher value of E, we
might have found a completely differ-
ent (and wrong) result. Care should
therefore be taken when setting this
value. A good initial guess will usu-
ally be the static modulus of elastic-
ity, i.e. the modulus of elasticity at
very low frequencies.

The second point deals with the re-
quired accuracy of measurements. As
it was stated earlier, the method de-
scribed in this application note re-
quires that measurements of all the
involved parameters must be made
with great care. The phase of the
measured frequency response func-
tion in particular, becomes particu-
larly critical when one is trying to
measure the loss factor of materials
with little damping. If the material
under test has a loss factor of, let us
say 0.01 and if the uncertainty in the
estimation of the phase is in the or-
der of 1° (= 0.017 radians), then the
measurement becomes almost mean-
ingless as the uncertainty is almost
twice as large as the value we are
trying to estimate. The rubber mate-
rial we tested was not too critical, it
had a relatively large loss factor, but
it is strongly recommended to make
a reference measurement between ac-
celeration and force on a vibrating
stiff mass in the frequency range of
interest. Then use this measurement
to equalize the frequency response
function of the system under investi-
gation, if the material being investi-
gated is known to have small
damping.

Conclusion

The purpose of this application note
has been to show that a better esti-
mate of the complex modulus of elas-
ticity can be calculated based on a
simple non-resonant measurement.
The advantages of this modified non-
resonant method as opposed to the
widely used resonant method, are
twofold. First, it delivers not only
damping, but also stiffness, and sec-
ond, the information is available at
all frequencies, and not only at the
resonant frequencies.

It can be seen that the modified
non-resonant method has some prob-
lems at higher frequencies. One rea-
6



      
      USER-DEFINABLE AUXILIARY INFORMATION: LF_AT_RES                          
      -----------------------------------------------                          
                                                                               
      Reading: ABSOLUTE                                    Reading Unit:       
                                                                               
      LF_at_res = Bandwidth_3dB / Res_freq                                     
      Bandwidth_3dB = Right_3dB - Left_3dB                                     
      Res_freq = Freq_span_start + delta_f * Res_index                         
      Right_3dB = delta_f * right_index                                        
      Left_3dB  = delta_f * left_index                                         
      right_index = right_index_1 + right_ratio                                
      left_index  = left_index_1  - left_ratio                                 
      right_ratio = mag_right_1 / ( mag_right_1 - mag_right_2 )                
      left_ratio  = mag_left_1  / ( mag_left_1  - mag_left_2 )                 
      mag_right_1 = extract_element( shifted_FRF, right_index_1 )              
      mag_right_2 = extract_element( shifted_FRF, right_index_2 )              
      mag_left_1  = extract_element( shifted_FRF, left_index_1 )               
      mag_left_2  = extract_element( shifted_FRF, left_index_2 )               
      right_index_2 = right_index_1 + 1                                        
      right_index_1 = crossover_right( shifted_FRF, Res_index )                
      left_index_2  = left_index_1 - 1                                         
      left_index_1  = crossover_left( shifted_FRF, Res_index )                 
      Shifted_FRF = mag_of_FRF - sqrt(0.5) * resonance_amp                     
      Resonance_amp = extract_element( mag_of_FRF, Res_index )                 
      Res_index = index_of_max( close_to_peak )                                
      Close_to_peak = window( mag_of_FRF, index_of_x - 3, 7 )                  
      Mag_of_FRF = mag( data_source:func ) ; data_source must be an FRF.       

960448e

Fig.15 The definition of the UDAI LF_AT_RESON (loss factor at resonance)
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Fig.16 Loss factor calculated by resonance bandwidth method (upper cursor setup), and
loss factor calculated by modified non-resonant method (lower graph)
son for this is due to the fact that the
model used is not 100% exact. Any
small misalignment between the
higher resonance frequencies in the
model and the real ones will influ-
ence the estimated complex modulus.
It was also seen that that the loss
factor estimate got more and more
noisy at higher frequencies. This is
again understandable if we remem-
ber that the inertial forces dominate
at higher frequencies, i.e. stiffness
and damping have very little effect
on the FRF. But all in all, the modi-
fied non-resonant method is a clear
improvement over other methods.
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